Copied to
clipboard

G = C23.35D28order 448 = 26·7

6th non-split extension by C23 of D28 acting via D28/D14=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23.35D28, C22.3Dic28, C561C42C2, (C2×C8).1D14, (C2×C28).41D4, (C2×C4).30D28, C22⋊C8.3D7, (C2×C14).4Q16, C14.5(C2×Q16), (C2×C56).1C22, C2.7(C2×Dic28), C28.44D44C2, C14.7(C8⋊C22), (C22×C14).49D4, (C22×C4).76D14, C28.280(C4○D4), C2.10(C8⋊D14), (C2×C28).739C23, C28.48D4.3C2, C22.102(C2×D28), C71(C23.48D4), C4⋊Dic7.11C22, C4.104(D42D7), (C22×C28).49C22, (C2×Dic14).11C22, C14.15(C22.D4), C2.11(C22.D28), (C7×C22⋊C8).5C2, (C2×C14).122(C2×D4), (C2×C4⋊Dic7).12C2, (C2×C4).684(C22×D7), SmallGroup(448,256)

Series: Derived Chief Lower central Upper central

C1C2×C28 — C23.35D28
C1C7C14C28C2×C28C4⋊Dic7C2×C4⋊Dic7 — C23.35D28
C7C14C2×C28 — C23.35D28
C1C22C22×C4C22⋊C8

Generators and relations for C23.35D28
 G = < a,b,c,d,e | a2=b2=c2=1, d28=e2=c, ab=ba, ac=ca, dad-1=eae-1=abc, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=bd27 >

Subgroups: 508 in 104 conjugacy classes, 43 normal (25 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C7, C8, C2×C4, C2×C4, Q8, C23, C14, C14, C22⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C2×Q8, Dic7, C28, C28, C2×C14, C2×C14, C2×C14, C22⋊C8, Q8⋊C4, C2.D8, C2×C4⋊C4, C22⋊Q8, C56, Dic14, C2×Dic7, C2×C28, C2×C28, C22×C14, C23.48D4, Dic7⋊C4, C4⋊Dic7, C4⋊Dic7, C4⋊Dic7, C23.D7, C2×C56, C2×Dic14, C22×Dic7, C22×C28, C28.44D4, C561C4, C7×C22⋊C8, C28.48D4, C2×C4⋊Dic7, C23.35D28
Quotients: C1, C2, C22, D4, C23, D7, Q16, C2×D4, C4○D4, D14, C22.D4, C2×Q16, C8⋊C22, D28, C22×D7, C23.48D4, Dic28, C2×D28, D42D7, C22.D28, C2×Dic28, C8⋊D14, C23.35D28

Smallest permutation representation of C23.35D28
On 224 points
Generators in S224
(1 29)(2 69)(3 31)(4 71)(5 33)(6 73)(7 35)(8 75)(9 37)(10 77)(11 39)(12 79)(13 41)(14 81)(15 43)(16 83)(17 45)(18 85)(19 47)(20 87)(21 49)(22 89)(23 51)(24 91)(25 53)(26 93)(27 55)(28 95)(30 97)(32 99)(34 101)(36 103)(38 105)(40 107)(42 109)(44 111)(46 57)(48 59)(50 61)(52 63)(54 65)(56 67)(58 86)(60 88)(62 90)(64 92)(66 94)(68 96)(70 98)(72 100)(74 102)(76 104)(78 106)(80 108)(82 110)(84 112)(113 208)(114 142)(115 210)(116 144)(117 212)(118 146)(119 214)(120 148)(121 216)(122 150)(123 218)(124 152)(125 220)(126 154)(127 222)(128 156)(129 224)(130 158)(131 170)(132 160)(133 172)(134 162)(135 174)(136 164)(137 176)(138 166)(139 178)(140 168)(141 180)(143 182)(145 184)(147 186)(149 188)(151 190)(153 192)(155 194)(157 196)(159 198)(161 200)(163 202)(165 204)(167 206)(169 197)(171 199)(173 201)(175 203)(177 205)(179 207)(181 209)(183 211)(185 213)(187 215)(189 217)(191 219)(193 221)(195 223)
(1 68)(2 69)(3 70)(4 71)(5 72)(6 73)(7 74)(8 75)(9 76)(10 77)(11 78)(12 79)(13 80)(14 81)(15 82)(16 83)(17 84)(18 85)(19 86)(20 87)(21 88)(22 89)(23 90)(24 91)(25 92)(26 93)(27 94)(28 95)(29 96)(30 97)(31 98)(32 99)(33 100)(34 101)(35 102)(36 103)(37 104)(38 105)(39 106)(40 107)(41 108)(42 109)(43 110)(44 111)(45 112)(46 57)(47 58)(48 59)(49 60)(50 61)(51 62)(52 63)(53 64)(54 65)(55 66)(56 67)(113 208)(114 209)(115 210)(116 211)(117 212)(118 213)(119 214)(120 215)(121 216)(122 217)(123 218)(124 219)(125 220)(126 221)(127 222)(128 223)(129 224)(130 169)(131 170)(132 171)(133 172)(134 173)(135 174)(136 175)(137 176)(138 177)(139 178)(140 179)(141 180)(142 181)(143 182)(144 183)(145 184)(146 185)(147 186)(148 187)(149 188)(150 189)(151 190)(152 191)(153 192)(154 193)(155 194)(156 195)(157 196)(158 197)(159 198)(160 199)(161 200)(162 201)(163 202)(164 203)(165 204)(166 205)(167 206)(168 207)
(1 29)(2 30)(3 31)(4 32)(5 33)(6 34)(7 35)(8 36)(9 37)(10 38)(11 39)(12 40)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(57 85)(58 86)(59 87)(60 88)(61 89)(62 90)(63 91)(64 92)(65 93)(66 94)(67 95)(68 96)(69 97)(70 98)(71 99)(72 100)(73 101)(74 102)(75 103)(76 104)(77 105)(78 106)(79 107)(80 108)(81 109)(82 110)(83 111)(84 112)(113 141)(114 142)(115 143)(116 144)(117 145)(118 146)(119 147)(120 148)(121 149)(122 150)(123 151)(124 152)(125 153)(126 154)(127 155)(128 156)(129 157)(130 158)(131 159)(132 160)(133 161)(134 162)(135 163)(136 164)(137 165)(138 166)(139 167)(140 168)(169 197)(170 198)(171 199)(172 200)(173 201)(174 202)(175 203)(176 204)(177 205)(178 206)(179 207)(180 208)(181 209)(182 210)(183 211)(184 212)(185 213)(186 214)(187 215)(188 216)(189 217)(190 218)(191 219)(192 220)(193 221)(194 222)(195 223)(196 224)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 214 29 186)(2 146 30 118)(3 212 31 184)(4 144 32 116)(5 210 33 182)(6 142 34 114)(7 208 35 180)(8 140 36 168)(9 206 37 178)(10 138 38 166)(11 204 39 176)(12 136 40 164)(13 202 41 174)(14 134 42 162)(15 200 43 172)(16 132 44 160)(17 198 45 170)(18 130 46 158)(19 196 47 224)(20 128 48 156)(21 194 49 222)(22 126 50 154)(23 192 51 220)(24 124 52 152)(25 190 53 218)(26 122 54 150)(27 188 55 216)(28 120 56 148)(57 197 85 169)(58 129 86 157)(59 195 87 223)(60 127 88 155)(61 193 89 221)(62 125 90 153)(63 191 91 219)(64 123 92 151)(65 189 93 217)(66 121 94 149)(67 187 95 215)(68 119 96 147)(69 185 97 213)(70 117 98 145)(71 183 99 211)(72 115 100 143)(73 181 101 209)(74 113 102 141)(75 179 103 207)(76 167 104 139)(77 177 105 205)(78 165 106 137)(79 175 107 203)(80 163 108 135)(81 173 109 201)(82 161 110 133)(83 171 111 199)(84 159 112 131)

G:=sub<Sym(224)| (1,29)(2,69)(3,31)(4,71)(5,33)(6,73)(7,35)(8,75)(9,37)(10,77)(11,39)(12,79)(13,41)(14,81)(15,43)(16,83)(17,45)(18,85)(19,47)(20,87)(21,49)(22,89)(23,51)(24,91)(25,53)(26,93)(27,55)(28,95)(30,97)(32,99)(34,101)(36,103)(38,105)(40,107)(42,109)(44,111)(46,57)(48,59)(50,61)(52,63)(54,65)(56,67)(58,86)(60,88)(62,90)(64,92)(66,94)(68,96)(70,98)(72,100)(74,102)(76,104)(78,106)(80,108)(82,110)(84,112)(113,208)(114,142)(115,210)(116,144)(117,212)(118,146)(119,214)(120,148)(121,216)(122,150)(123,218)(124,152)(125,220)(126,154)(127,222)(128,156)(129,224)(130,158)(131,170)(132,160)(133,172)(134,162)(135,174)(136,164)(137,176)(138,166)(139,178)(140,168)(141,180)(143,182)(145,184)(147,186)(149,188)(151,190)(153,192)(155,194)(157,196)(159,198)(161,200)(163,202)(165,204)(167,206)(169,197)(171,199)(173,201)(175,203)(177,205)(179,207)(181,209)(183,211)(185,213)(187,215)(189,217)(191,219)(193,221)(195,223), (1,68)(2,69)(3,70)(4,71)(5,72)(6,73)(7,74)(8,75)(9,76)(10,77)(11,78)(12,79)(13,80)(14,81)(15,82)(16,83)(17,84)(18,85)(19,86)(20,87)(21,88)(22,89)(23,90)(24,91)(25,92)(26,93)(27,94)(28,95)(29,96)(30,97)(31,98)(32,99)(33,100)(34,101)(35,102)(36,103)(37,104)(38,105)(39,106)(40,107)(41,108)(42,109)(43,110)(44,111)(45,112)(46,57)(47,58)(48,59)(49,60)(50,61)(51,62)(52,63)(53,64)(54,65)(55,66)(56,67)(113,208)(114,209)(115,210)(116,211)(117,212)(118,213)(119,214)(120,215)(121,216)(122,217)(123,218)(124,219)(125,220)(126,221)(127,222)(128,223)(129,224)(130,169)(131,170)(132,171)(133,172)(134,173)(135,174)(136,175)(137,176)(138,177)(139,178)(140,179)(141,180)(142,181)(143,182)(144,183)(145,184)(146,185)(147,186)(148,187)(149,188)(150,189)(151,190)(152,191)(153,192)(154,193)(155,194)(156,195)(157,196)(158,197)(159,198)(160,199)(161,200)(162,201)(163,202)(164,203)(165,204)(166,205)(167,206)(168,207), (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(57,85)(58,86)(59,87)(60,88)(61,89)(62,90)(63,91)(64,92)(65,93)(66,94)(67,95)(68,96)(69,97)(70,98)(71,99)(72,100)(73,101)(74,102)(75,103)(76,104)(77,105)(78,106)(79,107)(80,108)(81,109)(82,110)(83,111)(84,112)(113,141)(114,142)(115,143)(116,144)(117,145)(118,146)(119,147)(120,148)(121,149)(122,150)(123,151)(124,152)(125,153)(126,154)(127,155)(128,156)(129,157)(130,158)(131,159)(132,160)(133,161)(134,162)(135,163)(136,164)(137,165)(138,166)(139,167)(140,168)(169,197)(170,198)(171,199)(172,200)(173,201)(174,202)(175,203)(176,204)(177,205)(178,206)(179,207)(180,208)(181,209)(182,210)(183,211)(184,212)(185,213)(186,214)(187,215)(188,216)(189,217)(190,218)(191,219)(192,220)(193,221)(194,222)(195,223)(196,224), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,214,29,186)(2,146,30,118)(3,212,31,184)(4,144,32,116)(5,210,33,182)(6,142,34,114)(7,208,35,180)(8,140,36,168)(9,206,37,178)(10,138,38,166)(11,204,39,176)(12,136,40,164)(13,202,41,174)(14,134,42,162)(15,200,43,172)(16,132,44,160)(17,198,45,170)(18,130,46,158)(19,196,47,224)(20,128,48,156)(21,194,49,222)(22,126,50,154)(23,192,51,220)(24,124,52,152)(25,190,53,218)(26,122,54,150)(27,188,55,216)(28,120,56,148)(57,197,85,169)(58,129,86,157)(59,195,87,223)(60,127,88,155)(61,193,89,221)(62,125,90,153)(63,191,91,219)(64,123,92,151)(65,189,93,217)(66,121,94,149)(67,187,95,215)(68,119,96,147)(69,185,97,213)(70,117,98,145)(71,183,99,211)(72,115,100,143)(73,181,101,209)(74,113,102,141)(75,179,103,207)(76,167,104,139)(77,177,105,205)(78,165,106,137)(79,175,107,203)(80,163,108,135)(81,173,109,201)(82,161,110,133)(83,171,111,199)(84,159,112,131)>;

G:=Group( (1,29)(2,69)(3,31)(4,71)(5,33)(6,73)(7,35)(8,75)(9,37)(10,77)(11,39)(12,79)(13,41)(14,81)(15,43)(16,83)(17,45)(18,85)(19,47)(20,87)(21,49)(22,89)(23,51)(24,91)(25,53)(26,93)(27,55)(28,95)(30,97)(32,99)(34,101)(36,103)(38,105)(40,107)(42,109)(44,111)(46,57)(48,59)(50,61)(52,63)(54,65)(56,67)(58,86)(60,88)(62,90)(64,92)(66,94)(68,96)(70,98)(72,100)(74,102)(76,104)(78,106)(80,108)(82,110)(84,112)(113,208)(114,142)(115,210)(116,144)(117,212)(118,146)(119,214)(120,148)(121,216)(122,150)(123,218)(124,152)(125,220)(126,154)(127,222)(128,156)(129,224)(130,158)(131,170)(132,160)(133,172)(134,162)(135,174)(136,164)(137,176)(138,166)(139,178)(140,168)(141,180)(143,182)(145,184)(147,186)(149,188)(151,190)(153,192)(155,194)(157,196)(159,198)(161,200)(163,202)(165,204)(167,206)(169,197)(171,199)(173,201)(175,203)(177,205)(179,207)(181,209)(183,211)(185,213)(187,215)(189,217)(191,219)(193,221)(195,223), (1,68)(2,69)(3,70)(4,71)(5,72)(6,73)(7,74)(8,75)(9,76)(10,77)(11,78)(12,79)(13,80)(14,81)(15,82)(16,83)(17,84)(18,85)(19,86)(20,87)(21,88)(22,89)(23,90)(24,91)(25,92)(26,93)(27,94)(28,95)(29,96)(30,97)(31,98)(32,99)(33,100)(34,101)(35,102)(36,103)(37,104)(38,105)(39,106)(40,107)(41,108)(42,109)(43,110)(44,111)(45,112)(46,57)(47,58)(48,59)(49,60)(50,61)(51,62)(52,63)(53,64)(54,65)(55,66)(56,67)(113,208)(114,209)(115,210)(116,211)(117,212)(118,213)(119,214)(120,215)(121,216)(122,217)(123,218)(124,219)(125,220)(126,221)(127,222)(128,223)(129,224)(130,169)(131,170)(132,171)(133,172)(134,173)(135,174)(136,175)(137,176)(138,177)(139,178)(140,179)(141,180)(142,181)(143,182)(144,183)(145,184)(146,185)(147,186)(148,187)(149,188)(150,189)(151,190)(152,191)(153,192)(154,193)(155,194)(156,195)(157,196)(158,197)(159,198)(160,199)(161,200)(162,201)(163,202)(164,203)(165,204)(166,205)(167,206)(168,207), (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(57,85)(58,86)(59,87)(60,88)(61,89)(62,90)(63,91)(64,92)(65,93)(66,94)(67,95)(68,96)(69,97)(70,98)(71,99)(72,100)(73,101)(74,102)(75,103)(76,104)(77,105)(78,106)(79,107)(80,108)(81,109)(82,110)(83,111)(84,112)(113,141)(114,142)(115,143)(116,144)(117,145)(118,146)(119,147)(120,148)(121,149)(122,150)(123,151)(124,152)(125,153)(126,154)(127,155)(128,156)(129,157)(130,158)(131,159)(132,160)(133,161)(134,162)(135,163)(136,164)(137,165)(138,166)(139,167)(140,168)(169,197)(170,198)(171,199)(172,200)(173,201)(174,202)(175,203)(176,204)(177,205)(178,206)(179,207)(180,208)(181,209)(182,210)(183,211)(184,212)(185,213)(186,214)(187,215)(188,216)(189,217)(190,218)(191,219)(192,220)(193,221)(194,222)(195,223)(196,224), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,214,29,186)(2,146,30,118)(3,212,31,184)(4,144,32,116)(5,210,33,182)(6,142,34,114)(7,208,35,180)(8,140,36,168)(9,206,37,178)(10,138,38,166)(11,204,39,176)(12,136,40,164)(13,202,41,174)(14,134,42,162)(15,200,43,172)(16,132,44,160)(17,198,45,170)(18,130,46,158)(19,196,47,224)(20,128,48,156)(21,194,49,222)(22,126,50,154)(23,192,51,220)(24,124,52,152)(25,190,53,218)(26,122,54,150)(27,188,55,216)(28,120,56,148)(57,197,85,169)(58,129,86,157)(59,195,87,223)(60,127,88,155)(61,193,89,221)(62,125,90,153)(63,191,91,219)(64,123,92,151)(65,189,93,217)(66,121,94,149)(67,187,95,215)(68,119,96,147)(69,185,97,213)(70,117,98,145)(71,183,99,211)(72,115,100,143)(73,181,101,209)(74,113,102,141)(75,179,103,207)(76,167,104,139)(77,177,105,205)(78,165,106,137)(79,175,107,203)(80,163,108,135)(81,173,109,201)(82,161,110,133)(83,171,111,199)(84,159,112,131) );

G=PermutationGroup([[(1,29),(2,69),(3,31),(4,71),(5,33),(6,73),(7,35),(8,75),(9,37),(10,77),(11,39),(12,79),(13,41),(14,81),(15,43),(16,83),(17,45),(18,85),(19,47),(20,87),(21,49),(22,89),(23,51),(24,91),(25,53),(26,93),(27,55),(28,95),(30,97),(32,99),(34,101),(36,103),(38,105),(40,107),(42,109),(44,111),(46,57),(48,59),(50,61),(52,63),(54,65),(56,67),(58,86),(60,88),(62,90),(64,92),(66,94),(68,96),(70,98),(72,100),(74,102),(76,104),(78,106),(80,108),(82,110),(84,112),(113,208),(114,142),(115,210),(116,144),(117,212),(118,146),(119,214),(120,148),(121,216),(122,150),(123,218),(124,152),(125,220),(126,154),(127,222),(128,156),(129,224),(130,158),(131,170),(132,160),(133,172),(134,162),(135,174),(136,164),(137,176),(138,166),(139,178),(140,168),(141,180),(143,182),(145,184),(147,186),(149,188),(151,190),(153,192),(155,194),(157,196),(159,198),(161,200),(163,202),(165,204),(167,206),(169,197),(171,199),(173,201),(175,203),(177,205),(179,207),(181,209),(183,211),(185,213),(187,215),(189,217),(191,219),(193,221),(195,223)], [(1,68),(2,69),(3,70),(4,71),(5,72),(6,73),(7,74),(8,75),(9,76),(10,77),(11,78),(12,79),(13,80),(14,81),(15,82),(16,83),(17,84),(18,85),(19,86),(20,87),(21,88),(22,89),(23,90),(24,91),(25,92),(26,93),(27,94),(28,95),(29,96),(30,97),(31,98),(32,99),(33,100),(34,101),(35,102),(36,103),(37,104),(38,105),(39,106),(40,107),(41,108),(42,109),(43,110),(44,111),(45,112),(46,57),(47,58),(48,59),(49,60),(50,61),(51,62),(52,63),(53,64),(54,65),(55,66),(56,67),(113,208),(114,209),(115,210),(116,211),(117,212),(118,213),(119,214),(120,215),(121,216),(122,217),(123,218),(124,219),(125,220),(126,221),(127,222),(128,223),(129,224),(130,169),(131,170),(132,171),(133,172),(134,173),(135,174),(136,175),(137,176),(138,177),(139,178),(140,179),(141,180),(142,181),(143,182),(144,183),(145,184),(146,185),(147,186),(148,187),(149,188),(150,189),(151,190),(152,191),(153,192),(154,193),(155,194),(156,195),(157,196),(158,197),(159,198),(160,199),(161,200),(162,201),(163,202),(164,203),(165,204),(166,205),(167,206),(168,207)], [(1,29),(2,30),(3,31),(4,32),(5,33),(6,34),(7,35),(8,36),(9,37),(10,38),(11,39),(12,40),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(57,85),(58,86),(59,87),(60,88),(61,89),(62,90),(63,91),(64,92),(65,93),(66,94),(67,95),(68,96),(69,97),(70,98),(71,99),(72,100),(73,101),(74,102),(75,103),(76,104),(77,105),(78,106),(79,107),(80,108),(81,109),(82,110),(83,111),(84,112),(113,141),(114,142),(115,143),(116,144),(117,145),(118,146),(119,147),(120,148),(121,149),(122,150),(123,151),(124,152),(125,153),(126,154),(127,155),(128,156),(129,157),(130,158),(131,159),(132,160),(133,161),(134,162),(135,163),(136,164),(137,165),(138,166),(139,167),(140,168),(169,197),(170,198),(171,199),(172,200),(173,201),(174,202),(175,203),(176,204),(177,205),(178,206),(179,207),(180,208),(181,209),(182,210),(183,211),(184,212),(185,213),(186,214),(187,215),(188,216),(189,217),(190,218),(191,219),(192,220),(193,221),(194,222),(195,223),(196,224)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,214,29,186),(2,146,30,118),(3,212,31,184),(4,144,32,116),(5,210,33,182),(6,142,34,114),(7,208,35,180),(8,140,36,168),(9,206,37,178),(10,138,38,166),(11,204,39,176),(12,136,40,164),(13,202,41,174),(14,134,42,162),(15,200,43,172),(16,132,44,160),(17,198,45,170),(18,130,46,158),(19,196,47,224),(20,128,48,156),(21,194,49,222),(22,126,50,154),(23,192,51,220),(24,124,52,152),(25,190,53,218),(26,122,54,150),(27,188,55,216),(28,120,56,148),(57,197,85,169),(58,129,86,157),(59,195,87,223),(60,127,88,155),(61,193,89,221),(62,125,90,153),(63,191,91,219),(64,123,92,151),(65,189,93,217),(66,121,94,149),(67,187,95,215),(68,119,96,147),(69,185,97,213),(70,117,98,145),(71,183,99,211),(72,115,100,143),(73,181,101,209),(74,113,102,141),(75,179,103,207),(76,167,104,139),(77,177,105,205),(78,165,106,137),(79,175,107,203),(80,163,108,135),(81,173,109,201),(82,161,110,133),(83,171,111,199),(84,159,112,131)]])

79 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H4I7A7B7C8A8B8C8D14A···14I14J···14O28A···28L28M···28R56A···56X
order122222444444444777888814···1414···1428···2828···2856···56
size11112222428282828565622244442···24···42···24···44···4

79 irreducible representations

dim1111112222222222444
type+++++++++-++++-+-+
imageC1C2C2C2C2C2D4D4D7C4○D4Q16D14D14D28D28Dic28C8⋊C22D42D7C8⋊D14
kernelC23.35D28C28.44D4C561C4C7×C22⋊C8C28.48D4C2×C4⋊Dic7C2×C28C22×C14C22⋊C8C28C2×C14C2×C8C22×C4C2×C4C23C22C14C4C2
# reps12211111344636624166

Matrix representation of C23.35D28 in GL6(𝔽113)

100000
010000
00112000
00011200
000010
000051112
,
100000
010000
00112000
00011200
00001120
00000112
,
100000
010000
00112000
00011200
000010
000001
,
6400000
26830000
00874900
00348800
0000622
00005651
,
17950000
16960000
00231800
00719000
00008783
00007926

G:=sub<GL(6,GF(113))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,112,0,0,0,0,0,0,112,0,0,0,0,0,0,1,51,0,0,0,0,0,112],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,112,0,0,0,0,0,0,112,0,0,0,0,0,0,112,0,0,0,0,0,0,112],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,112,0,0,0,0,0,0,112,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[64,26,0,0,0,0,0,83,0,0,0,0,0,0,87,34,0,0,0,0,49,88,0,0,0,0,0,0,62,56,0,0,0,0,2,51],[17,16,0,0,0,0,95,96,0,0,0,0,0,0,23,71,0,0,0,0,18,90,0,0,0,0,0,0,87,79,0,0,0,0,83,26] >;

C23.35D28 in GAP, Magma, Sage, TeX

C_2^3._{35}D_{28}
% in TeX

G:=Group("C2^3.35D28");
// GroupNames label

G:=SmallGroup(448,256);
// by ID

G=gap.SmallGroup(448,256);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,336,254,219,310,1123,136,18822]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^28=e^2=c,a*b=b*a,a*c=c*a,d*a*d^-1=e*a*e^-1=a*b*c,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=b*d^27>;
// generators/relations

׿
×
𝔽